Roll No.:

B020312(020)

B. Tech. (Third Semester) Examination, Nov.-Dec. 2020

(New Scheme)

(Civil Engg. Branch)

INTRODUCTION TO FLUID MECHANICS

Time Allowed: Three hours

Maximum Marks: 100

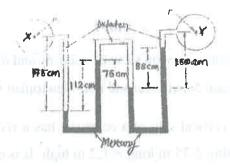
Minimum Pass Marks: 35

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d) of each questions.

Unit-I

- 1. (a) Enunciate Newton's law of viscosity and distinguish between Newtonian and non-Newtonian fluids.
 - (b) The vertical side of a reservoir has a rectangular opening $2.75 \text{ m long} \times 1.2 \text{ m high.}$ It is closed by

a plate using 4 bolts placed at the corner of the opening. What would be the tension in the bolts if water stands to a height of 1.8 m above the top edge of the opening?


8

8

8

h = dk4m J.8m -R

- (c) On what factors does the pressure variation in the vertical direction depends? Derive the expression for pressure variation.
- (d) Two U-tube manometers are connected in series as shown in figure. Determine difference of pressure between X and Y.

BORIL ON TO THE HILL IN Unit-II to See that I won the

- **2.** (a) What should be the acceleration in steady uniform flow?
 - (b) A fluid flows along a flat surface parallel to the x-direction. The velocity u varies linearly with y, the distance from the flat surface, that is u = Ay.
 - (i) Find the stream function of the flow
 - (ii) Determine whether or not the flow is irrotational
 - (c) Is the flownet analysis applicable to rotational flow?

 If not, why?
 - (d) Show that the stream lines and equipotential lines from a net of mutually perpendicular lines.

Unit-III

- 3. (a) Describe the nature of various forces included in the momentum equation.
 - (b) A venturimeter is to be filled in a 150 mm dia.

 Pipeline horizontally at a section where the pressure is 100 kN/m². If the maximum flow of water in the

8

8

pipe is 150 litres/sec, find the diameter of the throat
so that the pressure at the throat does not fall below
75 kN/m ² (vacuum). Assume that 3% of the
differential head is lost between the inlet and throat.

- (c) "Bernoulli's equation is a special case of the generalized energy equation." Comment on the validity of this statement.
- (d) What condition leads to cavitation? Is cavitation possible in a free surface flow?

Unit-IV

- 4. (a) What are the different causes of loss of energy in pipe flow?
 - (b) What do you understand by best hydraulic channel cross section? In how many ways can you express it?
 - (c) Derive the expression and sketch the velocity and shear stress distribution across the flow in a circular pipe (for fully developed laminar flow).
 - (d) Determine the dimensions of an economical

B020312(020)

trapezoidal section of an open channel with side slope 2 H : 1 V laid at a slope of 1 in 1600 to carry a discharge of 36 m³/s. Assume Chezy's coefficient C = 50.

8

8

Unit-V

- 5. (a) Why should the coefficient of velocity be less for mouthpiece as compared to orifices?
 - (b) What are the various methods for measuring the flow in open channel? Discuss the limitations of each. 8
 - (c) Differentiate between a sharp-crested and a broad crested weir.
 - (d) What are the advantages of a triangular weir over a rectangular one? Which one is better suited for a wide range of discharge variation?

8